ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfuzi Unicode version

Theorem dfuzi 8348
Description: An expression for the upper integers that start at  N that is analogous to dfnn2 7916 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
Hypothesis
Ref Expression
dfuz.1  |-  N  e.  ZZ
Assertion
Ref Expression
dfuzi  |-  { z  e.  ZZ  |  N  <_  z }  =  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
Distinct variable group:    x, y, z, N

Proof of Theorem dfuzi
StepHypRef Expression
1 ssintab 3632 . . 3  |-  ( { z  e.  ZZ  |  N  <_  z }  C_  |^|
{ x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. x ( ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x )  ->  { z  e.  ZZ  |  N  <_  z } 
C_  x ) )
2 dfuz.1 . . . 4  |-  N  e.  ZZ
32peano5uzi 8347 . . 3  |-  ( ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  ->  { z  e.  ZZ  |  N  <_  z } 
C_  x )
41, 3mpgbir 1342 . 2  |-  { z  e.  ZZ  |  N  <_  z }  C_  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
52zrei 8251 . . . . . 6  |-  N  e.  RR
65leidi 7477 . . . . 5  |-  N  <_  N
7 breq2 3768 . . . . . 6  |-  ( z  =  N  ->  ( N  <_  z  <->  N  <_  N ) )
87elrab 2698 . . . . 5  |-  ( N  e.  { z  e.  ZZ  |  N  <_ 
z }  <->  ( N  e.  ZZ  /\  N  <_  N ) )
92, 6, 8mpbir2an 849 . . . 4  |-  N  e. 
{ z  e.  ZZ  |  N  <_  z }
10 peano2uz2 8345 . . . . . 6  |-  ( ( N  e.  ZZ  /\  y  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( y  +  1 )  e.  { z  e.  ZZ  |  N  <_  z } )
112, 10mpan 400 . . . . 5  |-  ( y  e.  { z  e.  ZZ  |  N  <_ 
z }  ->  (
y  +  1 )  e.  { z  e.  ZZ  |  N  <_ 
z } )
1211rgen 2374 . . . 4  |-  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e.  { z  e.  ZZ  |  N  <_  z }
13 zex 8254 . . . . . 6  |-  ZZ  e.  _V
1413rabex 3901 . . . . 5  |-  { z  e.  ZZ  |  N  <_  z }  e.  _V
15 eleq2 2101 . . . . . 6  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  ( N  e.  x  <->  N  e.  { z  e.  ZZ  |  N  <_  z } ) )
16 eleq2 2101 . . . . . . 7  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
1716raleqbi1dv 2513 . . . . . 6  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e.  { z  e.  ZZ  |  N  <_  z } ) )
1815, 17anbi12d 442 . . . . 5  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  (
( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( N  e.  {
z  e.  ZZ  |  N  <_  z }  /\  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e. 
{ z  e.  ZZ  |  N  <_  z } ) ) )
1914, 18elab 2687 . . . 4  |-  ( { z  e.  ZZ  |  N  <_  z }  e.  { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }  <-> 
( N  e.  {
z  e.  ZZ  |  N  <_  z }  /\  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
209, 12, 19mpbir2an 849 . . 3  |-  { z  e.  ZZ  |  N  <_  z }  e.  {
x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
21 intss1 3630 . . 3  |-  ( { z  e.  ZZ  |  N  <_  z }  e.  { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }  ->  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  { z  e.  ZZ  |  N  <_ 
z } )
2220, 21ax-mp 7 . 2  |-  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  { z  e.  ZZ  |  N  <_  z }
234, 22eqssi 2961 1  |-  { z  e.  ZZ  |  N  <_  z }  =  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   {crab 2310    C_ wss 2917   |^|cint 3615   class class class wbr 3764  (class class class)co 5512   1c1 6890    + caddc 6892    <_ cle 7061   ZZcz 8245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator