ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftest Unicode version

Theorem dftest 822
Description: A proposition is testable iff its negative or double-negative is true. See Chapter 2 [Moschovakis] p. 2.

Our notation for testability is DECID  -. before the formula in question. For example, DECID  -.  x  =  y corresponds to "x = y is testable". (Contributed by David A. Wheeler, 13-Aug-2018.)

Assertion
Ref Expression
dftest  |-  (DECID  -.  ph  <->  ( -.  ph  \/  -.  -.  ph ) )

Proof of Theorem dftest
StepHypRef Expression
1 df-dc 743 1  |-  (DECID  -.  ph  <->  ( -.  ph  \/  -.  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 98    \/ wo 629  DECID wdc 742
This theorem depends on definitions:  df-dc 743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator