ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfioo2 Unicode version

Theorem dfioo2 8843
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
dfioo2  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
Distinct variable group:    x, w, y

Proof of Theorem dfioo2
StepHypRef Expression
1 ioof 8840 . . 3  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
2 ffn 5046 . . 3  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
3 fnovim 5609 . . 3  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  (,)  =  (
x  e.  RR* ,  y  e.  RR*  |->  ( x (,) y ) ) )
41, 2, 3mp2b 8 . 2  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  ( x (,) y ) )
5 iooval2 8784 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x (,) y )  =  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
65mpt2eq3ia 5570 . 2  |-  ( x  e.  RR* ,  y  e. 
RR*  |->  ( x (,) y ) )  =  ( x  e.  RR* ,  y  e.  RR*  |->  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
74, 6eqtri 2060 1  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    = wceq 1243   {crab 2310   ~Pcpw 3359   class class class wbr 3764    X. cxp 4343    Fn wfn 4897   -->wf 4898  (class class class)co 5512    |-> cmpt2 5514   RRcr 6888   RR*cxr 7059    < clt 7060   (,)cioo 8757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-po 4033  df-iso 4034  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-ioo 8761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator