Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfioo2 | Unicode version |
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
dfioo2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 8840 | . . 3 | |
2 | ffn 5046 | . . 3 | |
3 | fnovim 5609 | . . 3 | |
4 | 1, 2, 3 | mp2b 8 | . 2 |
5 | iooval2 8784 | . . 3 | |
6 | 5 | mpt2eq3ia 5570 | . 2 |
7 | 4, 6 | eqtri 2060 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wceq 1243 crab 2310 cpw 3359 class class class wbr 3764 cxp 4343 wfn 4897 wf 4898 (class class class)co 5512 cmpt2 5514 cr 6888 cxr 7059 clt 7060 cioo 8757 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-pre-ltirr 6996 ax-pre-ltwlin 6997 ax-pre-lttrn 6998 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-po 4033 df-iso 4034 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-pnf 7062 df-mnf 7063 df-xr 7064 df-ltxr 7065 df-le 7066 df-ioo 8761 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |