ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn5imf Unicode version

Theorem dffn5imf 5228
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.)
Hypothesis
Ref Expression
dffn5imf.1  |-  F/_ x F
Assertion
Ref Expression
dffn5imf  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem dffn5imf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5219 . 2  |-  ( F  Fn  A  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
2 dffn5imf.1 . . . 4  |-  F/_ x F
3 nfcv 2178 . . . 4  |-  F/_ x
z
42, 3nffv 5185 . . 3  |-  F/_ x
( F `  z
)
5 nfcv 2178 . . 3  |-  F/_ z
( F `  x
)
6 fveq2 5178 . . 3  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
74, 5, 6cbvmpt 3851 . 2  |-  ( z  e.  A  |->  ( F `
 z ) )  =  ( x  e.  A  |->  ( F `  x ) )
81, 7syl6eq 2088 1  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243   F/_wnfc 2165    |-> cmpt 3818    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator