ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1st2 Unicode version

Theorem df1st2 5840
Description: An alternate possible definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
Distinct variable group:    x, y, z

Proof of Theorem df1st2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fo1st 5784 . . . . 5  |-  1st : _V -onto-> _V
2 fofn 5108 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
3 dffn5im 5219 . . . . 5  |-  ( 1st 
Fn  _V  ->  1st  =  ( w  e.  _V  |->  ( 1st `  w ) ) )
41, 2, 3mp2b 8 . . . 4  |-  1st  =  ( w  e.  _V  |->  ( 1st `  w ) )
5 mptv 3853 . . . 4  |-  ( w  e.  _V  |->  ( 1st `  w ) )  =  { <. w ,  z
>.  |  z  =  ( 1st `  w ) }
64, 5eqtri 2060 . . 3  |-  1st  =  { <. w ,  z
>.  |  z  =  ( 1st `  w ) }
76reseq1i 4608 . 2  |-  ( 1st  |`  ( _V  X.  _V ) )  =  ( { <. w ,  z
>.  |  z  =  ( 1st `  w ) }  |`  ( _V  X.  _V ) )
8 resopab 4652 . 2  |-  ( {
<. w ,  z >.  |  z  =  ( 1st `  w ) }  |`  ( _V  X.  _V ) )  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  z  =  ( 1st `  w ) ) }
9 vex 2560 . . . . 5  |-  x  e. 
_V
10 vex 2560 . . . . 5  |-  y  e. 
_V
119, 10op1std 5775 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( 1st `  w
)  =  x )
1211eqeq2d 2051 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( 1st `  w
)  <->  z  =  x ) )
1312dfoprab3 5817 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  z  =  ( 1st `  w
) ) }  =  { <. <. x ,  y
>. ,  z >.  |  z  =  x }
147, 8, 133eqtrri 2065 1  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    = wceq 1243    e. wcel 1393   _Vcvv 2557   <.cop 3378   {copab 3817    |-> cmpt 3818    X. cxp 4343    |` cres 4347    Fn wfn 4897   -onto->wfo 4900   ` cfv 4902   {coprab 5513   1stc1st 5765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908  df-fv 4910  df-oprab 5516  df-1st 5767  df-2nd 5768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator