ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq2 Unicode version

Theorem deceq2 8371
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
Assertion
Ref Expression
deceq2  |-  ( A  =  B  -> ; C A  = ; C B )

Proof of Theorem deceq2
StepHypRef Expression
1 oveq2 5520 . 2  |-  ( A  =  B  ->  (
( 10  x.  C
)  +  A )  =  ( ( 10  x.  C )  +  B ) )
2 df-dec 8369 . 2  |- ; C A  =  ( ( 10  x.  C
)  +  A )
3 df-dec 8369 . 2  |- ; C B  =  ( ( 10  x.  C
)  +  B )
41, 2, 33eqtr4g 2097 1  |-  ( A  =  B  -> ; C A  = ; C B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243  (class class class)co 5512    + caddc 6892    x. cmul 6894   10c10 7972  ;cdc 8368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515  df-dec 8369
This theorem is referenced by:  deceq2i  8373
  Copyright terms: Public domain W3C validator