ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvjust Structured version   Unicode version

Theorem cvjust 2032
Description: Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a setvar variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1241, which allows us to substitute a setvar variable for a class variable. See also cab 2023 and df-clab 2024. Note that this is not a rigorous justification, because cv 1241 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
cvjust  {  |  }
Distinct variable group:   ,

Proof of Theorem cvjust
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2031 . 2  {  |  }  {  |  }
2 df-clab 2024 . . 3  {  |  }
3 elsb3 1849 . . 3
42, 3bitr2i 174 . 2 
{  |  }
51, 4mpgbir 1339 1  {  |  }
Colors of variables: wff set class
Syntax hints:   wb 98   wceq 1242   wcel 1390  wsb 1642   {cab 2023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator