ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbprc Unicode version

Theorem csbprc 3262
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
csbprc  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )

Proof of Theorem csbprc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 2853 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 sbcex 2772 . . . . . . 7  |-  ( [. A  /  x ]. y  e.  B  ->  A  e. 
_V )
32con3i 562 . . . . . 6  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. y  e.  B
)
43pm2.21d 549 . . . . 5  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. y  e.  B  -> F.  ) )
5 falim 1257 . . . . 5  |-  ( F. 
->  [. A  /  x ]. y  e.  B
)
64, 5impbid1 130 . . . 4  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. y  e.  B  <-> F.  ) )
76abbidv 2155 . . 3  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  | F.  }
)
8 fal 1250 . . . 4  |-  -. F.
98abf 3260 . . 3  |-  { y  | F.  }  =  (/)
107, 9syl6eq 2088 . 2  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  (/) )
111, 10syl5eq 2084 1  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1243   F. wfal 1248    e. wcel 1393   {cab 2026   _Vcvv 2557   [.wsbc 2764   [_csb 2852   (/)c0 3224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator