Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2d Structured version   Unicode version

Theorem csbeq2d 2868
 Description: Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
csbeq2d.1
csbeq2d.2
Assertion
Ref Expression
csbeq2d

Proof of Theorem csbeq2d
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 csbeq2d.1 . . . 4
2 csbeq2d.2 . . . . 5
32eleq2d 2104 . . . 4
41, 3sbcbid 2810 . . 3
54abbidv 2152 . 2
6 df-csb 2847 . 2
7 df-csb 2847 . 2
85, 6, 73eqtr4g 2094 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1242  wnf 1346   wcel 1390  cab 2023  wsbc 2758  csb 2846 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-sbc 2759  df-csb 2847 This theorem is referenced by:  csbeq2dv  2869
 Copyright terms: Public domain W3C validator