ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2bidc Unicode version

Theorem con2bidc 768
Description: Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.)
Assertion
Ref Expression
con2bidc DECID DECID

Proof of Theorem con2bidc
StepHypRef Expression
1 con1bidc 767 . . . . 5 DECID DECID
21imp 115 . . . 4 DECID DECID
3 bicom 128 . . . 4
4 bicom 128 . . . 4
52, 3, 43bitr3g 211 . . 3 DECID DECID
65bicomd 129 . 2 DECID DECID
76ex 108 1 DECID DECID
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97   wb 98  DECID wdc 741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742
This theorem is referenced by:  annimdc  844  pm4.55dc  845  nbbndc  1282
  Copyright terms: Public domain W3C validator