Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cocan2 | Unicode version |
Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
cocan2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5106 | . . . . . . 7 | |
2 | 1 | 3ad2ant1 925 | . . . . . 6 |
3 | fvco3 5244 | . . . . . 6 | |
4 | 2, 3 | sylan 267 | . . . . 5 |
5 | fvco3 5244 | . . . . . 6 | |
6 | 2, 5 | sylan 267 | . . . . 5 |
7 | 4, 6 | eqeq12d 2054 | . . . 4 |
8 | 7 | ralbidva 2322 | . . 3 |
9 | fveq2 5178 | . . . . . 6 | |
10 | fveq2 5178 | . . . . . 6 | |
11 | 9, 10 | eqeq12d 2054 | . . . . 5 |
12 | 11 | cbvfo 5425 | . . . 4 |
13 | 12 | 3ad2ant1 925 | . . 3 |
14 | 8, 13 | bitrd 177 | . 2 |
15 | simp2 905 | . . . 4 | |
16 | fnfco 5065 | . . . 4 | |
17 | 15, 2, 16 | syl2anc 391 | . . 3 |
18 | simp3 906 | . . . 4 | |
19 | fnfco 5065 | . . . 4 | |
20 | 18, 2, 19 | syl2anc 391 | . . 3 |
21 | eqfnfv 5265 | . . 3 | |
22 | 17, 20, 21 | syl2anc 391 | . 2 |
23 | eqfnfv 5265 | . . 3 | |
24 | 15, 18, 23 | syl2anc 391 | . 2 |
25 | 14, 22, 24 | 3bitr4d 209 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 w3a 885 wceq 1243 wcel 1393 wral 2306 ccom 4349 wfn 4897 wf 4898 wfo 4900 cfv 4902 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-fo 4908 df-fv 4910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |