ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocan1 Unicode version

Theorem cocan1 5427
Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan1  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  H  =  K
) )

Proof of Theorem cocan1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvco3 5244 . . . . . 6  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( ( F  o.  H ) `  x
)  =  ( F `
 ( H `  x ) ) )
213ad2antl2 1067 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F  o.  H
) `  x )  =  ( F `  ( H `  x ) ) )
3 fvco3 5244 . . . . . 6  |-  ( ( K : A --> B  /\  x  e.  A )  ->  ( ( F  o.  K ) `  x
)  =  ( F `
 ( K `  x ) ) )
433ad2antl3 1068 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F  o.  K
) `  x )  =  ( F `  ( K `  x ) ) )
52, 4eqeq12d 2054 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x )  <->  ( F `  ( H `  x
) )  =  ( F `  ( K `
 x ) ) ) )
6 simpl1 907 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  F : B -1-1-> C )
7 ffvelrn 5300 . . . . . 6  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
873ad2antl2 1067 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  ( H `  x )  e.  B )
9 ffvelrn 5300 . . . . . 6  |-  ( ( K : A --> B  /\  x  e.  A )  ->  ( K `  x
)  e.  B )
1093ad2antl3 1068 . . . . 5  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  ( K `  x )  e.  B )
11 f1fveq 5411 . . . . 5  |-  ( ( F : B -1-1-> C  /\  ( ( H `  x )  e.  B  /\  ( K `  x
)  e.  B ) )  ->  ( ( F `  ( H `  x ) )  =  ( F `  ( K `  x )
)  <->  ( H `  x )  =  ( K `  x ) ) )
126, 8, 10, 11syl12anc 1133 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( F `  ( H `  x )
)  =  ( F `
 ( K `  x ) )  <->  ( H `  x )  =  ( K `  x ) ) )
135, 12bitrd 177 . . 3  |-  ( ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  /\  x  e.  A )  ->  (
( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x )  <->  ( H `  x )  =  ( K `  x ) ) )
1413ralbidva 2322 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( A. x  e.  A  ( ( F  o.  H ) `  x )  =  ( ( F  o.  K
) `  x )  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
15 f1f 5092 . . . . . 6  |-  ( F : B -1-1-> C  ->  F : B --> C )
16153ad2ant1 925 . . . . 5  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  F : B --> C )
17 ffn 5046 . . . . 5  |-  ( F : B --> C  ->  F  Fn  B )
1816, 17syl 14 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  F  Fn  B
)
19 simp2 905 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  H : A --> B )
20 fnfco 5065 . . . 4  |-  ( ( F  Fn  B  /\  H : A --> B )  ->  ( F  o.  H )  Fn  A
)
2118, 19, 20syl2anc 391 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( F  o.  H )  Fn  A
)
22 simp3 906 . . . 4  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  K : A --> B )
23 fnfco 5065 . . . 4  |-  ( ( F  Fn  B  /\  K : A --> B )  ->  ( F  o.  K )  Fn  A
)
2418, 22, 23syl2anc 391 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( F  o.  K )  Fn  A
)
25 eqfnfv 5265 . . 3  |-  ( ( ( F  o.  H
)  Fn  A  /\  ( F  o.  K
)  Fn  A )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  A. x  e.  A  ( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x ) ) )
2621, 24, 25syl2anc 391 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  A. x  e.  A  ( ( F  o.  H ) `  x
)  =  ( ( F  o.  K ) `
 x ) ) )
27 ffn 5046 . . . 4  |-  ( H : A --> B  ->  H  Fn  A )
2819, 27syl 14 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  H  Fn  A
)
29 ffn 5046 . . . 4  |-  ( K : A --> B  ->  K  Fn  A )
3022, 29syl 14 . . 3  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  K  Fn  A
)
31 eqfnfv 5265 . . 3  |-  ( ( H  Fn  A  /\  K  Fn  A )  ->  ( H  =  K  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
3228, 30, 31syl2anc 391 . 2  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( H  =  K  <->  A. x  e.  A  ( H `  x )  =  ( K `  x ) ) )
3314, 26, 323bitr4d 209 1  |-  ( ( F : B -1-1-> C  /\  H : A --> B  /\  K : A --> B )  ->  ( ( F  o.  H )  =  ( F  o.  K
)  <->  H  =  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   A.wral 2306    o. ccom 4349    Fn wfn 4897   -->wf 4898   -1-1->wf1 4899   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator