ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1olem Unicode version

Theorem cnvf1olem 5845
Description: Lemma for cnvf1o 5846. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1olem  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( C  e.  `' A  /\  B  =  U. `' { C } ) )

Proof of Theorem cnvf1olem
StepHypRef Expression
1 simprr 484 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  =  U. `' { B } )
2 1st2nd 5807 . . . . . . . 8  |-  ( ( Rel  A  /\  B  e.  A )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
32adantrr 448 . . . . . . 7  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B )
>. )
43sneqd 3388 . . . . . 6  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  { B }  =  { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
54cnveqd 4511 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  `' { B }  =  `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
65unieqd 3591 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { B }  =  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. } )
7 1stexg 5794 . . . . . 6  |-  ( B  e.  A  ->  ( 1st `  B )  e. 
_V )
8 2ndexg 5795 . . . . . 6  |-  ( B  e.  A  ->  ( 2nd `  B )  e. 
_V )
9 opswapg 4807 . . . . . 6  |-  ( ( ( 1st `  B
)  e.  _V  /\  ( 2nd `  B )  e.  _V )  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
107, 8, 9syl2anc 391 . . . . 5  |-  ( B  e.  A  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
1110ad2antrl 459 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { <. ( 1st `  B
) ,  ( 2nd `  B ) >. }  =  <. ( 2nd `  B
) ,  ( 1st `  B ) >. )
121, 6, 113eqtrd 2076 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  =  <. ( 2nd `  B ) ,  ( 1st `  B )
>. )
13 simprl 483 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  e.  A )
143, 13eqeltrrd 2115 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
)
15 opelcnvg 4515 . . . . . 6  |-  ( ( ( 2nd `  B
)  e.  _V  /\  ( 1st `  B )  e.  _V )  -> 
( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
168, 7, 15syl2anc 391 . . . . 5  |-  ( B  e.  A  ->  ( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
1716ad2antrl 459 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A 
<-> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  A
) )
1814, 17mpbird 156 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 2nd `  B
) ,  ( 1st `  B ) >.  e.  `' A )
1912, 18eqeltrd 2114 . 2  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  C  e.  `' A
)
20 opswapg 4807 . . . . . 6  |-  ( ( ( 2nd `  B
)  e.  _V  /\  ( 1st `  B )  e.  _V )  ->  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. }  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
218, 7, 20syl2anc 391 . . . . 5  |-  ( B  e.  A  ->  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. }  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
2221eqcomd 2045 . . . 4  |-  ( B  e.  A  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2322ad2antrl 459 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  <. ( 1st `  B
) ,  ( 2nd `  B ) >.  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2412sneqd 3388 . . . . 5  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  { C }  =  { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2524cnveqd 4511 . . . 4  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  `' { C }  =  `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2625unieqd 3591 . . 3  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  U. `' { C }  =  U. `' { <. ( 2nd `  B
) ,  ( 1st `  B ) >. } )
2723, 3, 263eqtr4d 2082 . 2  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  ->  B  =  U. `' { C } )
2819, 27jca 290 1  |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) )  -> 
( C  e.  `' A  /\  B  =  U. `' { C } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   _Vcvv 2557   {csn 3375   <.cop 3378   U.cuni 3580   `'ccnv 4344   Rel wrel 4350   ` cfv 4902   1stc1st 5765   2ndc2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908  df-fv 4910  df-1st 5767  df-2nd 5768
This theorem is referenced by:  cnvf1o  5846
  Copyright terms: Public domain W3C validator