ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cn1lem Unicode version

Theorem cn1lem 9834
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
cn1lem.1  |-  F : CC
--> CC
cn1lem.2  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
Assertion
Ref Expression
cn1lem  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
Distinct variable groups:    x, y, z   
y, A, z    y, F
Allowed substitution hints:    A( x)    F( x, z)

Proof of Theorem cn1lem
StepHypRef Expression
1 simpr 103 . 2  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  x  e.  RR+ )
2 simpr 103 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  z  e.  CC )
3 simpll 481 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  A  e.  CC )
4 cn1lem.2 . . . . 5  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
52, 3, 4syl2anc 391 . . . 4  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
6 cn1lem.1 . . . . . . . . 9  |-  F : CC
--> CC
76ffvelrni 5301 . . . . . . . 8  |-  ( z  e.  CC  ->  ( F `  z )  e.  CC )
82, 7syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( F `  z )  e.  CC )
96ffvelrni 5301 . . . . . . . 8  |-  ( A  e.  CC  ->  ( F `  A )  e.  CC )
103, 9syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( F `  A )  e.  CC )
118, 10subcld 7322 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( F `
 z )  -  ( F `  A ) )  e.  CC )
1211abscld 9777 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  e.  RR )
132, 3subcld 7322 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( z  -  A )  e.  CC )
1413abscld 9777 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
z  -  A ) )  e.  RR )
15 rpre 8589 . . . . . 6  |-  ( x  e.  RR+  ->  x  e.  RR )
1615ad2antlr 458 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  x  e.  RR )
17 lelttr 7106 . . . . 5  |-  ( ( ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  e.  RR  /\  ( abs `  ( z  -  A ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) )  /\  ( abs `  ( z  -  A ) )  < 
x )  ->  ( abs `  ( ( F `
 z )  -  ( F `  A ) ) )  <  x
) )
1812, 14, 16, 17syl3anc 1135 . . . 4  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <_  ( abs `  (
z  -  A ) )  /\  ( abs `  ( z  -  A
) )  <  x
)  ->  ( abs `  ( ( F `  z )  -  ( F `  A )
) )  <  x
) )
195, 18mpand 405 . . 3  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( abs `  ( z  -  A
) )  <  x  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
2019ralrimiva 2392 . 2  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
21 breq2 3768 . . . . 5  |-  ( y  =  x  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  x
) )
2221imbi1d 220 . . . 4  |-  ( y  =  x  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <-> 
( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) ) )
2322ralbidv 2326 . . 3  |-  ( y  =  x  ->  ( A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <->  A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) ) )
2423rspcev 2656 . 2  |-  ( ( x  e.  RR+  /\  A. z  e.  CC  (
( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
251, 20, 24syl2anc 391 1  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    e. wcel 1393   A.wral 2306   E.wrex 2307   class class class wbr 3764   -->wf 4898   ` cfv 4902  (class class class)co 5512   CCcc 6887   RRcr 6888    < clt 7060    <_ cle 7061    - cmin 7182   RR+crp 8583   abscabs 9595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003  ax-caucvg 7004
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255  df-cj 9442  df-re 9443  df-im 9444  df-rsqrt 9596  df-abs 9597
This theorem is referenced by:  abscn2  9835  cjcn2  9836  recn2  9837  imcn2  9838
  Copyright terms: Public domain W3C validator