ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft2 Unicode version

Theorem climshft2 9827
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1  |-  Z  =  ( ZZ>= `  M )
climshft2.2  |-  ( ph  ->  M  e.  ZZ )
climshft2.3  |-  ( ph  ->  K  e.  ZZ )
climshft2.5  |-  ( ph  ->  F  e.  W )
climshft2.6  |-  ( ph  ->  G  e.  X )
climshft2.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
) )
Assertion
Ref Expression
climshft2  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    k, F    k, G    k, K    k, M    ph, k    k, Z    A, k
Allowed substitution hints:    W( k)    X( k)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climshft2.6 . . . 4  |-  ( ph  ->  G  e.  X )
3 climshft2.3 . . . . . 6  |-  ( ph  ->  K  e.  ZZ )
43zcnd 8361 . . . . 5  |-  ( ph  ->  K  e.  CC )
54negcld 7309 . . . 4  |-  ( ph  -> 
-u K  e.  CC )
6 ovshftex 9420 . . . 4  |-  ( ( G  e.  X  /\  -u K  e.  CC )  ->  ( G  shift  -u K )  e.  _V )
72, 5, 6syl2anc 391 . . 3  |-  ( ph  ->  ( G  shift  -u K
)  e.  _V )
8 climshft2.5 . . 3  |-  ( ph  ->  F  e.  W )
9 climshft2.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
10 funi 4932 . . . . . . . 8  |-  Fun  _I
11 elex 2566 . . . . . . . . . 10  |-  ( G  e.  X  ->  G  e.  _V )
122, 11syl 14 . . . . . . . . 9  |-  ( ph  ->  G  e.  _V )
13 dmi 4550 . . . . . . . . 9  |-  dom  _I  =  _V
1412, 13syl6eleqr 2131 . . . . . . . 8  |-  ( ph  ->  G  e.  dom  _I  )
15 funfvex 5192 . . . . . . . 8  |-  ( ( Fun  _I  /\  G  e.  dom  _I  )  -> 
(  _I  `  G
)  e.  _V )
1610, 14, 15sylancr 393 . . . . . . 7  |-  ( ph  ->  (  _I  `  G
)  e.  _V )
1716adantr 261 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (  _I  `  G )  e. 
_V )
184adantr 261 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  K  e.  CC )
19 eluzelz 8482 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
2019, 1eleq2s 2132 . . . . . . . 8  |-  ( k  e.  Z  ->  k  e.  ZZ )
2120zcnd 8361 . . . . . . 7  |-  ( k  e.  Z  ->  k  e.  CC )
2221adantl 262 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  CC )
23 shftval4g 9438 . . . . . 6  |-  ( ( (  _I  `  G
)  e.  _V  /\  K  e.  CC  /\  k  e.  CC )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( (  _I 
`  G ) `  ( K  +  k
) ) )
2417, 18, 22, 23syl3anc 1135 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( (  _I 
`  G ) `  ( K  +  k
) ) )
25 fvi 5230 . . . . . . . . 9  |-  ( G  e.  X  ->  (  _I  `  G )  =  G )
262, 25syl 14 . . . . . . . 8  |-  ( ph  ->  (  _I  `  G
)  =  G )
2726adantr 261 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (  _I  `  G )  =  G )
2827oveq1d 5527 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (
(  _I  `  G
)  shift  -u K )  =  ( G  shift  -u K
) )
2928fveq1d 5180 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( ( G 
shift  -u K ) `  k ) )
30 addcom 7150 . . . . . . 7  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
314, 21, 30syl2an 273 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  =  ( k  +  K ) )
3227, 31fveq12d 5184 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
(  _I  `  G
) `  ( K  +  k ) )  =  ( G `  ( k  +  K
) ) )
3324, 29, 323eqtr3d 2080 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G  shift  -u K
) `  k )  =  ( G `  ( k  +  K
) ) )
34 climshft2.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
) )
3533, 34eqtrd 2072 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G  shift  -u K
) `  k )  =  ( F `  k ) )
361, 7, 8, 9, 35climeq 9820 . 2  |-  ( ph  ->  ( ( G  shift  -u K )  ~~>  A  <->  F  ~~>  A ) )
373znegcld 8362 . . 3  |-  ( ph  -> 
-u K  e.  ZZ )
38 climshft 9825 . . 3  |-  ( (
-u K  e.  ZZ  /\  G  e.  X )  ->  ( ( G 
shift  -u K )  ~~>  A  <->  G  ~~>  A ) )
3937, 2, 38syl2anc 391 . 2  |-  ( ph  ->  ( ( G  shift  -u K )  ~~>  A  <->  G  ~~>  A ) )
4036, 39bitr3d 179 1  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   _Vcvv 2557   class class class wbr 3764    _I cid 4025   dom cdm 4345   Fun wfun 4896   ` cfv 4902  (class class class)co 5512   CCcc 6887    + caddc 6892   -ucneg 7183   ZZcz 8245   ZZ>=cuz 8473    shift cshi 9415    ~~> cli 9799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-shft 9416  df-clim 9800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator