ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1nlem Unicode version

Theorem climcvg1nlem 9868
Description: Lemma for climcvg1n 9869. We construct sequences of the real and imaginary parts of each term of  F, show those converge, and use that to show that  F converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f  |-  ( ph  ->  F : NN --> CC )
climcvg1n.c  |-  ( ph  ->  C  e.  RR+ )
climcvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
climcvg1nlem.g  |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `
 x ) ) )
climcvg1nlem.h  |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
 x ) ) )
climcvg1nlem.j  |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) )
Assertion
Ref Expression
climcvg1nlem  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    C, k, n   
k, F, x    k, G, n    k, H, n, x    k, J    ph, k, n, x
Allowed substitution hints:    C( x)    F( n)    G( x)    J( x, n)

Proof of Theorem climcvg1nlem
StepHypRef Expression
1 nnuz 8508 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 8272 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 climcvg1n.f . . . . . . . 8  |-  ( ph  ->  F : NN --> CC )
43ffvelrnda 5302 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  CC )
54recld 9538 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( Re
`  ( F `  x ) )  e.  RR )
6 climcvg1nlem.g . . . . . 6  |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `
 x ) ) )
75, 6fmptd 5322 . . . . 5  |-  ( ph  ->  G : NN --> RR )
8 climcvg1n.c . . . . 5  |-  ( ph  ->  C  e.  RR+ )
9 climcvg1n.cau . . . . . 6  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
10 eluznn 8538 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
1110adantll 445 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
123ad2antrr 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> CC )
1312, 11ffvelrnd 5303 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  CC )
1413recld 9538 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( F `  k
) )  e.  RR )
15 fveq2 5178 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
1615fveq2d 5182 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
Re `  ( F `  x ) )  =  ( Re `  ( F `  k )
) )
1716, 6fvmptg 5248 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  ( Re `  ( F `
 k ) )  e.  RR )  -> 
( G `  k
)  =  ( Re
`  ( F `  k ) ) )
1811, 14, 17syl2anc 391 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  =  ( Re `  ( F `
 k ) ) )
19 simplr 482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2012, 19ffvelrnd 5303 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  CC )
2120recld 9538 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( F `  n
) )  e.  RR )
22 fveq2 5178 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  ( F `  x )  =  ( F `  n ) )
2322fveq2d 5182 . . . . . . . . . . . . . . 15  |-  ( x  =  n  ->  (
Re `  ( F `  x ) )  =  ( Re `  ( F `  n )
) )
2423, 6fvmptg 5248 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( Re `  ( F `
 n ) )  e.  RR )  -> 
( G `  n
)  =  ( Re
`  ( F `  n ) ) )
2519, 21, 24syl2anc 391 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  =  ( Re `  ( F `
 n ) ) )
2618, 25oveq12d 5530 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  =  ( ( Re `  ( F `  k ) )  -  ( Re
`  ( F `  n ) ) ) )
2713, 20resubd 9561 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  =  ( ( Re `  ( F `  k )
)  -  ( Re
`  ( F `  n ) ) ) )
2826, 27eqtr4d 2075 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  =  ( Re `  (
( F `  k
)  -  ( F `
 n ) ) ) )
2928fveq2d 5182 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  =  ( abs `  ( Re
`  ( ( F `
 k )  -  ( F `  n ) ) ) ) )
3013, 20subcld 7322 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  k )  -  ( F `  n ) )  e.  CC )
31 absrele 9679 . . . . . . . . . . 11  |-  ( ( ( F `  k
)  -  ( F `
 n ) )  e.  CC  ->  ( abs `  ( Re `  ( ( F `  k )  -  ( F `  n )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 n ) ) ) )
3230, 31syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( Re `  (
( F `  k
)  -  ( F `
 n ) ) ) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
3329, 32eqbrtrd 3784 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
3430recld 9538 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  e.  RR )
3534recnd 7054 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  e.  CC )
3628, 35eqeltrd 2114 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  e.  CC )
3736abscld 9777 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  e.  RR )
3830abscld 9777 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  e.  RR )
398ad2antrr 457 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR+ )
4019nnrpd 8621 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
4139, 40rpdivcld 8640 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR+ )
4241rpred 8622 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR )
43 lelttr 7106 . . . . . . . . . 10  |-  ( ( ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  e.  RR  /\  ( C  /  n )  e.  RR )  ->  (
( ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4437, 38, 42, 43syl3anc 1135 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4533, 44mpand 405 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  -> 
( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4645ralimdva 2387 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n )  ->  A. k  e.  ( ZZ>=
`  n ) ( abs `  ( ( G `  k )  -  ( G `  n ) ) )  <  ( C  /  n ) ) )
4746ralimdva 2387 . . . . . 6  |-  ( ph  ->  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <  ( C  /  n ) ) )
489, 47mpd 13 . . . . 5  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <  ( C  /  n ) )
497, 8, 48climrecvg1n 9867 . . . 4  |-  ( ph  ->  G  e.  dom  ~~>  )
50 climdm 9816 . . . 4  |-  ( G  e.  dom  ~~>  <->  G  ~~>  (  ~~>  `  G
) )
5149, 50sylib 127 . . 3  |-  ( ph  ->  G  ~~>  (  ~~>  `  G
) )
52 nnex 7920 . . . 4  |-  NN  e.  _V
53 fex 5388 . . . 4  |-  ( ( F : NN --> CC  /\  NN  e.  _V )  ->  F  e.  _V )
543, 52, 53sylancl 392 . . 3  |-  ( ph  ->  F  e.  _V )
554imcld 9539 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( Im
`  ( F `  x ) )  e.  RR )
56 climcvg1nlem.h . . . . . . 7  |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
 x ) ) )
5755, 56fmptd 5322 . . . . . 6  |-  ( ph  ->  H : NN --> RR )
5813imcld 9539 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( F `  k
) )  e.  RR )
5915fveq2d 5182 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  (
Im `  ( F `  x ) )  =  ( Im `  ( F `  k )
) )
6059, 56fvmptg 5248 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  ( Im `  ( F `
 k ) )  e.  RR )  -> 
( H `  k
)  =  ( Im
`  ( F `  k ) ) )
6111, 58, 60syl2anc 391 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  k )  =  ( Im `  ( F `
 k ) ) )
6220imcld 9539 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( F `  n
) )  e.  RR )
6322fveq2d 5182 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  (
Im `  ( F `  x ) )  =  ( Im `  ( F `  n )
) )
6463, 56fvmptg 5248 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( Im `  ( F `
 n ) )  e.  RR )  -> 
( H `  n
)  =  ( Im
`  ( F `  n ) ) )
6519, 62, 64syl2anc 391 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  n )  =  ( Im `  ( F `
 n ) ) )
6661, 65oveq12d 5530 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  =  ( ( Im `  ( F `  k ) )  -  ( Im
`  ( F `  n ) ) ) )
6713, 20imsubd 9562 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( ( F `  k )  -  ( F `  n )
) )  =  ( ( Im `  ( F `  k )
)  -  ( Im
`  ( F `  n ) ) ) )
6866, 67eqtr4d 2075 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  =  ( Im `  (
( F `  k
)  -  ( F `
 n ) ) ) )
6968fveq2d 5182 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  =  ( abs `  ( Im
`  ( ( F `
 k )  -  ( F `  n ) ) ) ) )
70 absimle 9680 . . . . . . . . . . . 12  |-  ( ( ( F `  k
)  -  ( F `
 n ) )  e.  CC  ->  ( abs `  ( Im `  ( ( F `  k )  -  ( F `  n )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 n ) ) ) )
7130, 70syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( Im `  (
( F `  k
)  -  ( F `
 n ) ) ) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
7269, 71eqbrtrd 3784 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
7361, 58eqeltrd 2114 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  k )  e.  RR )
7465, 62eqeltrd 2114 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  n )  e.  RR )
7573, 74resubcld 7379 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  e.  RR )
7675recnd 7054 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  e.  CC )
7776abscld 9777 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  e.  RR )
78 lelttr 7106 . . . . . . . . . . 11  |-  ( ( ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  e.  RR  /\  ( C  /  n )  e.  RR )  ->  (
( ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
7977, 38, 42, 78syl3anc 1135 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
8072, 79mpand 405 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  -> 
( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
8180ralimdva 2387 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n )  ->  A. k  e.  ( ZZ>=
`  n ) ( abs `  ( ( H `  k )  -  ( H `  n ) ) )  <  ( C  /  n ) ) )
8281ralimdva 2387 . . . . . . 7  |-  ( ph  ->  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <  ( C  /  n ) ) )
839, 82mpd 13 . . . . . 6  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <  ( C  /  n ) )
8457, 8, 83climrecvg1n 9867 . . . . 5  |-  ( ph  ->  H  e.  dom  ~~>  )
85 climdm 9816 . . . . 5  |-  ( H  e.  dom  ~~>  <->  H  ~~>  (  ~~>  `  H
) )
8684, 85sylib 127 . . . 4  |-  ( ph  ->  H  ~~>  (  ~~>  `  H
) )
87 ax-icn 6979 . . . . 5  |-  _i  e.  CC
8887a1i 9 . . . 4  |-  ( ph  ->  _i  e.  CC )
89 climcvg1nlem.j . . . . . 6  |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) )
9052mptex 5387 . . . . . 6  |-  ( x  e.  NN  |->  ( _i  x.  ( H `  x ) ) )  e.  _V
9189, 90eqeltri 2110 . . . . 5  |-  J  e. 
_V
9291a1i 9 . . . 4  |-  ( ph  ->  J  e.  _V )
93 ax-resscn 6976 . . . . . . 7  |-  RR  C_  CC
9493a1i 9 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
9557, 94fssd 5055 . . . . 5  |-  ( ph  ->  H : NN --> CC )
9695ffvelrnda 5302 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  e.  CC )
9789a1i 9 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) ) )
98 fveq2 5178 . . . . . . 7  |-  ( x  =  k  ->  ( H `  x )  =  ( H `  k ) )
9998oveq2d 5528 . . . . . 6  |-  ( x  =  k  ->  (
_i  x.  ( H `  x ) )  =  ( _i  x.  ( H `  k )
) )
10099adantl 262 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  =  k )  -> 
( _i  x.  ( H `  x )
)  =  ( _i  x.  ( H `  k ) ) )
101 simpr 103 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
10287a1i 9 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  _i  e.  CC )
103102, 96mulcld 7047 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( _i  x.  ( H `  k ) )  e.  CC )
10497, 100, 101, 103fvmptd 5253 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  =  ( _i  x.  ( H `  k )
) )
1051, 2, 86, 88, 92, 96, 104climmulc2 9851 . . 3  |-  ( ph  ->  J  ~~>  ( _i  x.  ( 
~~>  `  H ) ) )
1067ffvelrnda 5302 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
107106recnd 7054 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  CC )
108104, 103eqeltrd 2114 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  e.  CC )
1093ffvelrnda 5302 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
110109replimd 9541 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( Re `  ( F `  k ) )  +  ( _i  x.  ( Im `  ( F `  k ) ) ) ) )
111109recld 9538 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( Re
`  ( F `  k ) )  e.  RR )
112101, 111, 17syl2anc 391 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( Re `  ( F `  k )
) )
113109imcld 9539 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( Im
`  ( F `  k ) )  e.  RR )
114101, 113, 60syl2anc 391 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( Im `  ( F `  k )
) )
115114oveq2d 5528 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( _i  x.  ( H `  k ) )  =  ( _i  x.  (
Im `  ( F `  k ) ) ) )
116104, 115eqtrd 2072 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  =  ( _i  x.  (
Im `  ( F `  k ) ) ) )
117112, 116oveq12d 5530 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k )  +  ( J `  k ) )  =  ( ( Re `  ( F `  k ) )  +  ( _i  x.  ( Im `  ( F `  k ) ) ) ) )
118110, 117eqtr4d 2075 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( G `  k )  +  ( J `  k ) ) )
1191, 2, 51, 54, 105, 107, 108, 118climadd 9846 . 2  |-  ( ph  ->  F  ~~>  ( (  ~~>  `  G
)  +  ( _i  x.  (  ~~>  `  H
) ) ) )
120 climrel 9801 . . 3  |-  Rel  ~~>
121120releldmi 4573 . 2  |-  ( F  ~~>  ( (  ~~>  `  G
)  +  ( _i  x.  (  ~~>  `  H
) ) )  ->  F  e.  dom  ~~>  )
122119, 121syl 14 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   A.wral 2306   _Vcvv 2557    C_ wss 2917   class class class wbr 3764    |-> cmpt 3818   dom cdm 4345   -->wf 4898   ` cfv 4902  (class class class)co 5512   CCcc 6887   RRcr 6888   1c1 6890   _ici 6891    + caddc 6892    x. cmul 6894    < clt 7060    <_ cle 7061    - cmin 7182    / cdiv 7651   NNcn 7914   ZZ>=cuz 8473   RR+crp 8583   Recre 9440   Imcim 9441   abscabs 9595    ~~> cli 9799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003  ax-caucvg 7004
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255  df-cj 9442  df-re 9443  df-im 9444  df-rsqrt 9596  df-abs 9597  df-clim 9800
This theorem is referenced by:  climcvg1n  9869
  Copyright terms: Public domain W3C validator