ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn1 Unicode version

Theorem climcn1 9829
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn1.1  |-  Z  =  ( ZZ>= `  M )
climcn1.2  |-  ( ph  ->  M  e.  ZZ )
climcn1.3  |-  ( ph  ->  A  e.  B )
climcn1.4  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
climcn1.5  |-  ( ph  ->  G  ~~>  A )
climcn1.6  |-  ( ph  ->  H  e.  W )
climcn1.7  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
climcn1.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
climcn1.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
Assertion
Ref Expression
climcn1  |-  ( ph  ->  H  ~~>  ( F `  A ) )
Distinct variable groups:    x, k, y, z, A    B, k,
z    k, G, y, z   
k, H, x    k, F, x, y, z    ph, k, x, y, z    k, Z, y
Allowed substitution hints:    B( x, y)    G( x)    H( y, z)    M( x, y, z, k)    W( x, y, z, k)    Z( x, z)

Proof of Theorem climcn1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climcn1.7 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
2 climcn1.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
3 climcn1.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
43adantr 261 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  M  e.  ZZ )
5 simpr 103 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
6 eqidd 2041 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
7 climcn1.5 . . . . . . . . 9  |-  ( ph  ->  G  ~~>  A )
87adantr 261 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  G  ~~>  A )
92, 4, 5, 6, 8climi2 9809 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
102uztrn2 8490 . . . . . . . . . . . 12  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
11 climcn1.8 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
1211adantlr 446 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
13 oveq1 5519 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  k )  ->  (
z  -  A )  =  ( ( G `
 k )  -  A ) )
1413fveq2d 5182 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  k )  ->  ( abs `  ( z  -  A ) )  =  ( abs `  (
( G `  k
)  -  A ) ) )
1514breq1d 3774 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  k )  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
16 fveq2 5178 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( G `  k )  ->  ( F `  z )  =  ( F `  ( G `  k ) ) )
1716oveq1d 5527 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  k )  ->  (
( F `  z
)  -  ( F `
 A ) )  =  ( ( F `
 ( G `  k ) )  -  ( F `  A ) ) )
1817fveq2d 5182 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  k )  ->  ( abs `  ( ( F `
 z )  -  ( F `  A ) ) )  =  ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) ) )
1918breq1d 3774 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  k )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x  <->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2015, 19imbi12d 223 . . . . . . . . . . . . . . 15  |-  ( z  =  ( G `  k )  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <-> 
( ( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) ) )
2120rspcva 2654 . . . . . . . . . . . . . 14  |-  ( ( ( G `  k
)  e.  B  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2212, 21sylan 267 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2322an32s 502 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  k  e.  Z )  ->  (
( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2410, 23sylan2 270 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2524anassrs 380 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2625ralimdva 2387 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  y  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2726reximdva 2421 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
2827ex 108 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) ) )
299, 28mpid 37 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
3029rexlimdva 2433 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR+  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
3130adantr 261 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  A )
) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
321, 31mpd 13 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x )
3332ralrimiva 2392 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x )
34 climcn1.6 . . 3  |-  ( ph  ->  H  e.  W )
35 climcn1.9 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
36 climcn1.3 . . . 4  |-  ( ph  ->  A  e.  B )
37 climcn1.4 . . . . 5  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
3837ralrimiva 2392 . . . 4  |-  ( ph  ->  A. z  e.  B  ( F `  z )  e.  CC )
39 fveq2 5178 . . . . . 6  |-  ( z  =  A  ->  ( F `  z )  =  ( F `  A ) )
4039eleq1d 2106 . . . . 5  |-  ( z  =  A  ->  (
( F `  z
)  e.  CC  <->  ( F `  A )  e.  CC ) )
4140rspcv 2652 . . . 4  |-  ( A  e.  B  ->  ( A. z  e.  B  ( F `  z )  e.  CC  ->  ( F `  A )  e.  CC ) )
4236, 38, 41sylc 56 . . 3  |-  ( ph  ->  ( F `  A
)  e.  CC )
4338adantr 261 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A. z  e.  B  ( F `  z )  e.  CC )
4416eleq1d 2106 . . . . 5  |-  ( z  =  ( G `  k )  ->  (
( F `  z
)  e.  CC  <->  ( F `  ( G `  k
) )  e.  CC ) )
4544rspcv 2652 . . . 4  |-  ( ( G `  k )  e.  B  ->  ( A. z  e.  B  ( F `  z )  e.  CC  ->  ( F `  ( G `  k ) )  e.  CC ) )
4611, 43, 45sylc 56 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( G `  k ) )  e.  CC )
472, 3, 34, 35, 42, 46clim2c 9805 . 2  |-  ( ph  ->  ( H  ~~>  ( F `
 A )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
4833, 47mpbird 156 1  |-  ( ph  ->  H  ~~>  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   A.wral 2306   E.wrex 2307   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   CCcc 6887    < clt 7060    - cmin 7182   ZZcz 8245   ZZ>=cuz 8473   RR+crp 8583   abscabs 9595    ~~> cli 9799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-clim 9800
This theorem is referenced by:  climcn1lem  9839
  Copyright terms: Public domain W3C validator