ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjadd Unicode version

Theorem cjadd 9484
Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B )
)  =  ( ( * `  A )  +  ( * `  B ) ) )

Proof of Theorem cjadd
StepHypRef Expression
1 readd 9469 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  +  B )
)  =  ( ( Re `  A )  +  ( Re `  B ) ) )
2 imadd 9477 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B )
)  =  ( ( Im `  A )  +  ( Im `  B ) ) )
32oveq2d 5528 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  +  B ) ) )  =  ( _i  x.  ( ( Im `  A )  +  ( Im `  B ) ) ) )
4 ax-icn 6979 . . . . . . 7  |-  _i  e.  CC
54a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
6 imcl 9454 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
76adantr 261 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
87recnd 7054 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
9 imcl 9454 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
109adantl 262 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1110recnd 7054 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
125, 8, 11adddid 7051 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Im `  A
)  +  ( Im
`  B ) ) )  =  ( ( _i  x.  ( Im
`  A ) )  +  ( _i  x.  ( Im `  B ) ) ) )
133, 12eqtrd 2072 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  +  B ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  B )
) ) )
141, 13oveq12d 5530 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  +  B
) )  -  (
_i  x.  ( Im `  ( A  +  B
) ) ) )  =  ( ( ( Re `  A )  +  ( Re `  B ) )  -  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  ( Im `  B ) ) ) ) )
15 recl 9453 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1615adantr 261 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
1716recnd 7054 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
18 recl 9453 . . . . . 6  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1918adantl 262 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
2019recnd 7054 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
21 mulcl 7008 . . . . 5  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
224, 8, 21sylancr 393 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
23 mulcl 7008 . . . . 5  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
244, 11, 23sylancr 393 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
2517, 20, 22, 24addsub4d 7369 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  +  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  +  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
2614, 25eqtrd 2072 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  +  B
) )  -  (
_i  x.  ( Im `  ( A  +  B
) ) ) )  =  ( ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) )  +  ( ( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) ) )
27 addcl 7006 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
28 remim 9460 . . 3  |-  ( ( A  +  B )  e.  CC  ->  (
* `  ( A  +  B ) )  =  ( ( Re `  ( A  +  B
) )  -  (
_i  x.  ( Im `  ( A  +  B
) ) ) ) )
2927, 28syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B )
)  =  ( ( Re `  ( A  +  B ) )  -  ( _i  x.  ( Im `  ( A  +  B ) ) ) ) )
30 remim 9460 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
31 remim 9460 . . 3  |-  ( B  e.  CC  ->  (
* `  B )  =  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) )
3230, 31oveqan12d 5531 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  +  ( * `  B ) )  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  +  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
3326, 29, 323eqtr4d 2082 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B )
)  =  ( ( * `  A )  +  ( * `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   ` cfv 4902  (class class class)co 5512   CCcc 6887   RRcr 6888   _ici 6891    + caddc 6892    x. cmul 6894    - cmin 7182   *ccj 9439   Recre 9440   Imcim 9441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-2 7973  df-cj 9442  df-re 9443  df-im 9444
This theorem is referenced by:  cjsub  9492  cjreim  9503  cjaddi  9532  cjaddd  9565  sqabsadd  9653
  Copyright terms: Public domain W3C validator