Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsal Unicode version

Theorem ceqsal 2583
 Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
ceqsal.1
ceqsal.2
ceqsal.3
Assertion
Ref Expression
ceqsal
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ceqsal
StepHypRef Expression
1 ceqsal.2 . 2
2 ceqsal.1 . . 3
3 ceqsal.3 . . 3
42, 3ceqsalg 2582 . 2
51, 4ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  wal 1241   wceq 1243  wnf 1349   wcel 1393  cvv 2557 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559 This theorem is referenced by:  ceqsalv  2584
 Copyright terms: Public domain W3C validator