Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > celaront | Unicode version |
Description: "Celaront", one of the syllogisms of Aristotelian logic. No is , all is , and some exist, therefore some is not . (In Aristotelian notation, EAO-1: MeP and SaM therefore SoP.) For example, given "No reptiles have fur", "All snakes are reptiles.", and "Snakes exist.", prove "Some snakes have no fur". Note the existence hypothesis. Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
celaront.maj | |
celaront.min | |
celaront.e |
Ref | Expression |
---|---|
celaront |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | celaront.maj | . 2 | |
2 | celaront.min | . 2 | |
3 | celaront.e | . 2 | |
4 | 1, 2, 3 | barbari 2002 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 97 wal 1241 wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |