ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexdva2 Structured version   Unicode version

Theorem cbvrexdva2 2532
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvraldva2.1
cbvraldva2.2
Assertion
Ref Expression
cbvrexdva2
Distinct variable groups:   ,   ,   ,   ,   ,,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem cbvrexdva2
StepHypRef Expression
1 simpr 103 . . . . 5
2 cbvraldva2.2 . . . . 5
31, 2eleq12d 2105 . . . 4
4 cbvraldva2.1 . . . 4
53, 4anbi12d 442 . . 3
65cbvexdva 1801 . 2
7 df-rex 2306 . 2
8 df-rex 2306 . 2
96, 7, 83bitr4g 212 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98   wceq 1242  wex 1378   wcel 1390  wrex 2301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-cleq 2030  df-clel 2033  df-rex 2306
This theorem is referenced by:  cbvrexdva  2534  acexmid  5454
  Copyright terms: Public domain W3C validator