Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvreuv Unicode version

Theorem cbvreuv 2535
 Description: Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
cbvralv.1
Assertion
Ref Expression
cbvreuv
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvreuv
StepHypRef Expression
1 nfv 1421 . 2
2 nfv 1421 . 2
3 cbvralv.1 . 2
41, 2, 3cbvreu 2531 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  wreu 2308 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-cleq 2033  df-clel 2036  df-reu 2313 This theorem is referenced by:  reu8  2737
 Copyright terms: Public domain W3C validator