ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviinv Unicode version

Theorem cbviinv 3697
Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.)
Hypothesis
Ref Expression
cbviunv.1  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbviinv  |-  |^|_ x  e.  A  B  =  |^|_ y  e.  A  C
Distinct variable groups:    x, A    y, A    y, B    x, C
Allowed substitution hints:    B( x)    C( y)

Proof of Theorem cbviinv
StepHypRef Expression
1 nfcv 2178 . 2  |-  F/_ y B
2 nfcv 2178 . 2  |-  F/_ x C
3 cbviunv.1 . 2  |-  ( x  =  y  ->  B  =  C )
41, 2, 3cbviin 3695 1  |-  |^|_ x  e.  A  B  =  |^|_ y  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243   |^|_ciin 3658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-iin 3660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator