ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexfo Unicode version

Theorem cbvexfo 5426
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
Hypothesis
Ref Expression
cbvfo.1  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvexfo  |-  ( F : A -onto-> B  -> 
( E. x  e.  A  ph  <->  E. y  e.  B  ps )
)
Distinct variable groups:    x, y, A   
y, B    x, F, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    B( x)

Proof of Theorem cbvexfo
StepHypRef Expression
1 fofn 5108 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 cbvfo.1 . . . . . 6  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
32bicomd 129 . . . . 5  |-  ( ( F `  x )  =  y  ->  ( ps 
<-> 
ph ) )
43eqcoms 2043 . . . 4  |-  ( y  =  ( F `  x )  ->  ( ps 
<-> 
ph ) )
54rexrn 5304 . . 3  |-  ( F  Fn  A  ->  ( E. y  e.  ran  F ps  <->  E. x  e.  A  ph ) )
61, 5syl 14 . 2  |-  ( F : A -onto-> B  -> 
( E. y  e. 
ran  F ps  <->  E. x  e.  A  ph ) )
7 forn 5109 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
87rexeqdv 2512 . 2  |-  ( F : A -onto-> B  -> 
( E. y  e. 
ran  F ps  <->  E. y  e.  B  ps )
)
96, 8bitr3d 179 1  |-  ( F : A -onto-> B  -> 
( E. x  e.  A  ph  <->  E. y  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243   E.wrex 2307   ran crn 4346    Fn wfn 4897   -onto->wfo 4900   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator