Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexd Unicode version

Theorem cbvexd 1802
 Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 1893. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
Hypotheses
Ref Expression
cbvexd.1
cbvexd.2
cbvexd.3
Assertion
Ref Expression
cbvexd
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   (,)   ()

Proof of Theorem cbvexd
StepHypRef Expression
1 cbvexd.1 . . 3
21nfri 1412 . 2
3 cbvexd.2 . . 3
43nfrd 1413 . 2
5 cbvexd.3 . 2
62, 4, 5cbvexdh 1801 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  wnf 1349  wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427 This theorem depends on definitions:  df-bi 110  df-nf 1350 This theorem is referenced by:  cbvexdva  1804  vtoclgft  2604  bdsepnft  10007  strcollnft  10109
 Copyright terms: Public domain W3C validator