Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvaldva Unicode version

Theorem cbvaldva 1803
 Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvaldva.1
Assertion
Ref Expression
cbvaldva
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvaldva
StepHypRef Expression
1 nfv 1421 . 2
2 nfvd 1422 . 2
3 cbvaldva.1 . . 3
43ex 108 . 2
51, 2, 4cbvald 1800 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98  wal 1241 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350 This theorem is referenced by:  cbvraldva2  2537
 Copyright terms: Public domain W3C validator