ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlol Unicode version

Theorem caucvgprprlemlol 6796
Description: Lemma for caucvgprpr 6810. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemlol  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
Distinct variable groups:    A, m    m, F    F, l    u, F, r    p, l, s   
q, l, s, r   
t, l, p    u, q, s, r    u, p, t, r    ph, r    r, q, t
Allowed substitution hints:    ph( u, t, k, m, n, s, q, p, l)    A( u, t, k, n, s, r, q, p, l)    F( t, k, n, s, q, p)    L( u, t, k, m, n, s, r, q, p, l)

Proof of Theorem caucvgprprlemlol
Dummy variables  b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6463 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4392 . . . 4  |-  ( s 
<Q  t  ->  ( s  e.  Q.  /\  t  e.  Q. ) )
32simpld 105 . . 3  |-  ( s 
<Q  t  ->  s  e. 
Q. )
433ad2ant2 926 . 2  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  Q. )
5 caucvgprpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
65caucvgprprlemell 6783 . . . . . 6  |-  ( t  e.  ( 1st `  L
)  <->  ( t  e. 
Q.  /\  E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) ) )
76simprbi 260 . . . . 5  |-  ( t  e.  ( 1st `  L
)  ->  E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )
873ad2ant3 927 . . . 4  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )
9 simpll2 944 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  s  <Q  t )
10 ltanqg 6498 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z  +Q  x )  <Q  (
z  +Q  y ) ) )
1110adantl 262 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )  /\  (
x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. ) )  -> 
( x  <Q  y  <->  ( z  +Q  x ) 
<Q  ( z  +Q  y
) ) )
124ad2antrr 457 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  s  e.  Q. )
132simprd 107 . . . . . . . . . . . 12  |-  ( s 
<Q  t  ->  t  e. 
Q. )
14133ad2ant2 926 . . . . . . . . . . 11  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  t  e.  Q. )
1514ad2antrr 457 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  t  e.  Q. )
16 simplr 482 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  b  e.  N. )
17 nnnq 6520 . . . . . . . . . . 11  |-  ( b  e.  N.  ->  [ <. b ,  1o >. ]  ~Q  e.  Q. )
18 recclnq 6490 . . . . . . . . . . 11  |-  ( [
<. b ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )
1916, 17, 183syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e. 
Q. )
20 addcomnqg 6479 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  +Q  y
)  =  ( y  +Q  x ) )
2120adantl 262 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )  /\  (
x  e.  Q.  /\  y  e.  Q. )
)  ->  ( x  +Q  y )  =  ( y  +Q  x ) )
2211, 12, 15, 19, 21caovord2d 5670 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  ( s  <Q  t  <->  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) ) )
239, 22mpbid 135 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) )
24 ltnqpri 6692 . . . . . . . 8  |-  ( ( s  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  ->  <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >. )
2523, 24syl 14 . . . . . . 7  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >. )
26 ltsopr 6694 . . . . . . . 8  |-  <P  Or  P.
27 ltrelpr 6603 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
2826, 27sotri 4720 . . . . . . 7  |-  ( (
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  b )
)
2925, 28sylancom 397 . . . . . 6  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  b )
)
3029ex 108 . . . . 5  |-  ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  ->  ( <. { p  |  p 
<Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )  -> 
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
) )
3130reximdva 2421 . . . 4  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  ( E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  b )  ->  E. b  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
) )
328, 31mpd 13 . . 3  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  E. b  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )
33 opeq1 3549 . . . . . . . . . . 11  |-  ( b  =  r  ->  <. b ,  1o >.  =  <. r ,  1o >. )
3433eceq1d 6142 . . . . . . . . . 10  |-  ( b  =  r  ->  [ <. b ,  1o >. ]  ~Q  =  [ <. r ,  1o >. ]  ~Q  )
3534fveq2d 5182 . . . . . . . . 9  |-  ( b  =  r  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )
3635oveq2d 5528 . . . . . . . 8  |-  ( b  =  r  ->  (
s  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) )
3736breq2d 3776 . . . . . . 7  |-  ( b  =  r  ->  (
p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) ) )
3837abbidv 2155 . . . . . 6  |-  ( b  =  r  ->  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } )
3936breq1d 3774 . . . . . . 7  |-  ( b  =  r  ->  (
( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q ) )
4039abbidv 2155 . . . . . 6  |-  ( b  =  r  ->  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q }  =  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } )
4138, 40opeq12d 3557 . . . . 5  |-  ( b  =  r  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  =  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >. )
42 fveq2 5178 . . . . 5  |-  ( b  =  r  ->  ( F `  b )  =  ( F `  r ) )
4341, 42breq12d 3777 . . . 4  |-  ( b  =  r  ->  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
4443cbvrexv 2534 . . 3  |-  ( E. b  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )  <->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
)
4532, 44sylib 127 . 2  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) )
465caucvgprprlemell 6783 . 2  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
474, 45, 46sylanbrc 394 1  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307   {crab 2310   <.cop 3378   class class class wbr 3764   -->wf 4898   ` cfv 4902  (class class class)co 5512   1stc1st 5765   1oc1o 5994   [cec 6104   N.cnpi 6370    <N clti 6373    ~Q ceq 6377   Q.cnq 6378    +Q cplq 6380   *Qcrq 6382    <Q cltq 6383   P.cnp 6389    +P. cpp 6391    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-iltp 6568
This theorem is referenced by:  caucvgprprlemrnd  6799
  Copyright terms: Public domain W3C validator