ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdid Unicode version

Theorem caovdid 5676
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdig.1  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
caovdid.2  |-  ( ph  ->  A  e.  K )
caovdid.3  |-  ( ph  ->  B  e.  S )
caovdid.4  |-  ( ph  ->  C  e.  S )
Assertion
Ref Expression
caovdid  |-  ( ph  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, G, y, z   
x, H, y, z   
x, K, y, z   
x, S, y, z

Proof of Theorem caovdid
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 caovdid.2 . 2  |-  ( ph  ->  A  e.  K )
3 caovdid.3 . 2  |-  ( ph  ->  B  e.  S )
4 caovdid.4 . 2  |-  ( ph  ->  C  e.  S )
5 caovdig.1 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
65caovdig 5675 . 2  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
71, 2, 3, 4, 6syl13anc 1137 1  |-  ( ph  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393  (class class class)co 5512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by:  caovdir2d  5677  caovlem2d  5693  ltanqg  6498
  Copyright terms: Public domain W3C validator