Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcomd Unicode version

Theorem caovcomd 5657
 Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcomg.1
caovcomd.2
caovcomd.3
Assertion
Ref Expression
caovcomd
Distinct variable groups:   ,,   ,,   ,,   ,,   ,,

Proof of Theorem caovcomd
StepHypRef Expression
1 id 19 . 2
2 caovcomd.2 . 2
3 caovcomd.3 . 2
4 caovcomg.1 . . 3
54caovcomg 5656 . 2
61, 2, 3, 5syl12anc 1133 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wceq 1243   wcel 1393  (class class class)co 5512 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515 This theorem is referenced by:  caovcanrd  5664  caovord2d  5670  caovdir2d  5677  caov32d  5681  caov12d  5682  caov31d  5683  caov411d  5686  caov42d  5687  caovimo  5694  ecopovsymg  6205  ecopoverg  6207  ltsonq  6496  prarloclemlo  6592  addextpr  6719  ltsosr  6849  ltasrg  6855  mulextsr1lem  6864
 Copyright terms: Public domain W3C validator