ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcang Unicode version

Theorem caovcang 5662
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypothesis
Ref Expression
caovcang.1  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y )  =  ( x F z )  <-> 
y  =  z ) )
Assertion
Ref Expression
caovcang  |-  ( (
ph  /\  ( A  e.  T  /\  B  e.  S  /\  C  e.  S ) )  -> 
( ( A F B )  =  ( A F C )  <-> 
B  =  C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z   
x, T, y, z

Proof of Theorem caovcang
StepHypRef Expression
1 caovcang.1 . . 3  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y )  =  ( x F z )  <-> 
y  =  z ) )
21ralrimivvva 2402 . 2  |-  ( ph  ->  A. x  e.  T  A. y  e.  S  A. z  e.  S  ( ( x F y )  =  ( x F z )  <-> 
y  =  z ) )
3 oveq1 5519 . . . . 5  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
4 oveq1 5519 . . . . 5  |-  ( x  =  A  ->  (
x F z )  =  ( A F z ) )
53, 4eqeq12d 2054 . . . 4  |-  ( x  =  A  ->  (
( x F y )  =  ( x F z )  <->  ( A F y )  =  ( A F z ) ) )
65bibi1d 222 . . 3  |-  ( x  =  A  ->  (
( ( x F y )  =  ( x F z )  <-> 
y  =  z )  <-> 
( ( A F y )  =  ( A F z )  <-> 
y  =  z ) ) )
7 oveq2 5520 . . . . 5  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
87eqeq1d 2048 . . . 4  |-  ( y  =  B  ->  (
( A F y )  =  ( A F z )  <->  ( A F B )  =  ( A F z ) ) )
9 eqeq1 2046 . . . 4  |-  ( y  =  B  ->  (
y  =  z  <->  B  =  z ) )
108, 9bibi12d 224 . . 3  |-  ( y  =  B  ->  (
( ( A F y )  =  ( A F z )  <-> 
y  =  z )  <-> 
( ( A F B )  =  ( A F z )  <-> 
B  =  z ) ) )
11 oveq2 5520 . . . . 5  |-  ( z  =  C  ->  ( A F z )  =  ( A F C ) )
1211eqeq2d 2051 . . . 4  |-  ( z  =  C  ->  (
( A F B )  =  ( A F z )  <->  ( A F B )  =  ( A F C ) ) )
13 eqeq2 2049 . . . 4  |-  ( z  =  C  ->  ( B  =  z  <->  B  =  C ) )
1412, 13bibi12d 224 . . 3  |-  ( z  =  C  ->  (
( ( A F B )  =  ( A F z )  <-> 
B  =  z )  <-> 
( ( A F B )  =  ( A F C )  <-> 
B  =  C ) ) )
156, 10, 14rspc3v 2665 . 2  |-  ( ( A  e.  T  /\  B  e.  S  /\  C  e.  S )  ->  ( A. x  e.  T  A. y  e.  S  A. z  e.  S  ( ( x F y )  =  ( x F z )  <->  y  =  z )  ->  ( ( A F B )  =  ( A F C )  <->  B  =  C
) ) )
162, 15mpan9 265 1  |-  ( (
ph  /\  ( A  e.  T  /\  B  e.  S  /\  C  e.  S ) )  -> 
( ( A F B )  =  ( A F C )  <-> 
B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   A.wral 2306  (class class class)co 5512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by:  caovcand  5663
  Copyright terms: Public domain W3C validator