Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcand Unicode version

Theorem caovcand 5663
 Description: Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcang.1
caovcand.2
caovcand.3
caovcand.4
Assertion
Ref Expression
caovcand
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem caovcand
StepHypRef Expression
1 id 19 . 2
2 caovcand.2 . 2
3 caovcand.3 . 2
4 caovcand.4 . 2
5 caovcang.1 . . 3
65caovcang 5662 . 2
71, 2, 3, 4, 6syl13anc 1137 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   w3a 885   wceq 1243   wcel 1393  (class class class)co 5512 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515 This theorem is referenced by:  caovcanrd  5664  ecopovtrn  6203  ecopovtrng  6206
 Copyright terms: Public domain W3C validator