ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  camestres Structured version   Unicode version

Theorem camestres 2002
Description: "Camestres", one of the syllogisms of Aristotelian logic. All is , and no is , therefore no is . (In Aristotelian notation, AEE-2: PaM and SeM therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
camestres.maj
camestres.min
Assertion
Ref Expression
camestres

Proof of Theorem camestres
StepHypRef Expression
1 camestres.min . . . 4
21spi 1426 . . 3
3 camestres.maj . . . 4
43spi 1426 . . 3
52, 4nsyl 558 . 2
65ax-gen 1335 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in1 544  ax-in2 545  ax-gen 1335  ax-4 1397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator