ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqan12rd Unicode version

Theorem breqan12rd 3780
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
breqan12i.2  |-  ( ps 
->  C  =  D
)
Assertion
Ref Expression
breqan12rd  |-  ( ( ps  /\  ph )  ->  ( A R C  <-> 
B R D ) )

Proof of Theorem breqan12rd
StepHypRef Expression
1 breq1d.1 . . 3  |-  ( ph  ->  A  =  B )
2 breqan12i.2 . . 3  |-  ( ps 
->  C  =  D
)
31, 2breqan12d 3779 . 2  |-  ( (
ph  /\  ps )  ->  ( A R C  <-> 
B R D ) )
43ancoms 255 1  |-  ( ( ps  /\  ph )  ->  ( A R C  <-> 
B R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   class class class wbr 3764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765
This theorem is referenced by:  xltnegi  8748
  Copyright terms: Public domain W3C validator