Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq12 | Unicode version |
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3767 | . 2 | |
2 | breq2 3768 | . 2 | |
3 | 1, 2 | sylan9bb 435 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wceq 1243 class class class wbr 3764 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 |
This theorem is referenced by: breq12i 3773 breq12d 3777 breqan12d 3779 posng 4412 isopolem 5461 poxp 5853 isprmpt2 5858 ecopover 6204 ecopoverg 6207 ltdcnq 6495 recexpr 6736 ltresr 6915 reapval 7567 ltxr 8695 xrltnr 8701 xrltnsym 8714 xrlttr 8716 xrltso 8717 xrlttri3 8718 |
Copyright terms: Public domain | W3C validator |