ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdom Unicode version

Theorem brdom 6231
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1  |-  B  e. 
_V
Assertion
Ref Expression
brdom  |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
Distinct variable groups:    A, f    B, f

Proof of Theorem brdom
StepHypRef Expression
1 bren.1 . 2  |-  B  e. 
_V
2 brdomg 6229 . 2  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
31, 2ax-mp 7 1  |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
Colors of variables: wff set class
Syntax hints:    <-> wb 98   E.wex 1381    e. wcel 1393   _Vcvv 2557   class class class wbr 3764   -1-1->wf1 4899    ~<_ cdom 6220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356  df-fn 4905  df-f 4906  df-f1 4907  df-dom 6223
This theorem is referenced by:  domen  6232  domtr  6265
  Copyright terms: Public domain W3C validator