Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bndndx | Unicode version |
Description: A bounded real sequence is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.) |
Ref | Expression |
---|---|
bndndx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arch 8178 | . . . 4 | |
2 | nnre 7921 | . . . . . 6 | |
3 | lelttr 7106 | . . . . . . . . . . 11 | |
4 | ltle 7105 | . . . . . . . . . . . 12 | |
5 | 4 | 3adant2 923 | . . . . . . . . . . 11 |
6 | 3, 5 | syld 40 | . . . . . . . . . 10 |
7 | 6 | exp5o 1123 | . . . . . . . . 9 |
8 | 7 | com3l 75 | . . . . . . . 8 |
9 | 8 | imp4b 332 | . . . . . . 7 |
10 | 9 | com23 72 | . . . . . 6 |
11 | 2, 10 | sylan2 270 | . . . . 5 |
12 | 11 | reximdva 2421 | . . . 4 |
13 | 1, 12 | mpd 13 | . . 3 |
14 | r19.35-1 2460 | . . 3 | |
15 | 13, 14 | syl 14 | . 2 |
16 | 15 | rexlimiv 2427 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 w3a 885 wcel 1393 wral 2306 wrex 2307 class class class wbr 3764 cr 6888 clt 7060 cle 7061 cn 7914 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-1re 6978 ax-addrcl 6981 ax-pre-ltirr 6996 ax-pre-ltwlin 6997 ax-pre-lttrn 6998 ax-arch 7003 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-opab 3819 df-xp 4351 df-cnv 4353 df-pnf 7062 df-mnf 7063 df-xr 7064 df-ltxr 7065 df-le 7066 df-inn 7915 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |