Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-unexg | Unicode version |
Description: unexg 4178 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-unexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3090 | . . 3 | |
2 | eleq1 2100 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | uneq2 3091 | . . 3 | |
5 | eleq1 2100 | . . 3 | |
6 | 4, 5 | syl 14 | . 2 |
7 | vex 2560 | . . 3 | |
8 | vex 2560 | . . 3 | |
9 | 7, 8 | bj-unex 10039 | . 2 |
10 | 3, 6, 9 | vtocl2g 2617 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wceq 1243 wcel 1393 cvv 2557 cun 2915 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-pr 3944 ax-un 4170 ax-bd0 9933 ax-bdor 9936 ax-bdex 9939 ax-bdeq 9940 ax-bdel 9941 ax-bdsb 9942 ax-bdsep 10004 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-uni 3581 df-bdc 9961 |
This theorem is referenced by: bj-sucexg 10042 |
Copyright terms: Public domain | W3C validator |