Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sbimedh Structured version   Unicode version

Theorem bj-sbimedh 9246
Description: A strengthening of sbiedh 1667 (same proof). (Contributed by BJ, 16-Dec-2019.)
Hypotheses
Ref Expression
bj-sbimedh.1
bj-sbimedh.2
bj-sbimedh.3
Assertion
Ref Expression
bj-sbimedh

Proof of Theorem bj-sbimedh
StepHypRef Expression
1 sb1 1646 . . 3
2 bj-sbimedh.1 . . . 4
3 bj-sbimedh.3 . . . . 5
43impd 242 . . . 4
52, 4eximdh 1499 . . 3
61, 5syl5 28 . 2
7 bj-sbimedh.2 . . 3
82, 719.9hd 1549 . 2
96, 8syld 40 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97  wal 1240  wex 1378  wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-sb 1643
This theorem is referenced by:  bj-sbimeh  9247
  Copyright terms: Public domain W3C validator