Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omex2 | Unicode version |
Description: Using bounded set induction and the strong axiom of infinity, is a set, that is, we recover ax-infvn 10066 (see bj-2inf 10062 for the equivalence of the latter with bj-omex 10067). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-omex2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-inf2 10101 | . . 3 | |
2 | vex 2560 | . . . 4 | |
3 | bdcv 9968 | . . . . 5 BOUNDED | |
4 | 3 | bj-inf2vn 10099 | . . . 4 |
5 | 2, 4 | ax-mp 7 | . . 3 |
6 | 1, 5 | eximii 1493 | . 2 |
7 | 6 | issetri 2564 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wo 629 wal 1241 wceq 1243 wcel 1393 wrex 2307 cvv 2557 c0 3224 csuc 4102 com 4313 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-nul 3883 ax-pr 3944 ax-un 4170 ax-bd0 9933 ax-bdim 9934 ax-bdor 9936 ax-bdex 9939 ax-bdeq 9940 ax-bdel 9941 ax-bdsb 9942 ax-bdsep 10004 ax-bdsetind 10093 ax-inf2 10101 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-sn 3381 df-pr 3382 df-uni 3581 df-int 3616 df-suc 4108 df-iom 4314 df-bdc 9961 df-bj-ind 10051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |