Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem3 | Unicode version |
Description: Lemma for bj-inf2vn 10099. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vnlem3.bd1 | BOUNDED |
bj-inf2vnlem3.bd2 | BOUNDED |
Ref | Expression |
---|---|
bj-inf2vnlem3 | Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem2 10096 | . . 3 Ind | |
2 | bj-inf2vnlem3.bd1 | . . . . . 6 BOUNDED | |
3 | 2 | bdeli 9966 | . . . . 5 BOUNDED |
4 | bj-inf2vnlem3.bd2 | . . . . . 6 BOUNDED | |
5 | 4 | bdeli 9966 | . . . . 5 BOUNDED |
6 | 3, 5 | ax-bdim 9934 | . . . 4 BOUNDED |
7 | nfv 1421 | . . . 4 | |
8 | nfv 1421 | . . . 4 | |
9 | nfv 1421 | . . . 4 | |
10 | nfv 1421 | . . . 4 | |
11 | eleq1 2100 | . . . . . 6 | |
12 | eleq1 2100 | . . . . . 6 | |
13 | 11, 12 | imbi12d 223 | . . . . 5 |
14 | 13 | biimpd 132 | . . . 4 |
15 | eleq1 2100 | . . . . . 6 | |
16 | eleq1 2100 | . . . . . 6 | |
17 | 15, 16 | imbi12d 223 | . . . . 5 |
18 | 17 | biimprd 147 | . . . 4 |
19 | 6, 7, 8, 9, 10, 14, 18 | bdsetindis 10094 | . . 3 |
20 | 1, 19 | syl6 29 | . 2 Ind |
21 | dfss2 2934 | . 2 | |
22 | 20, 21 | syl6ibr 151 | 1 Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 629 wal 1241 wceq 1243 wcel 1393 wral 2306 wrex 2307 wss 2917 c0 3224 csuc 4102 BOUNDED wbdc 9960 Ind wind 10050 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-bdim 9934 ax-bdsetind 10093 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-suc 4108 df-bdc 9961 df-bj-ind 10051 |
This theorem is referenced by: bj-inf2vn 10099 |
Copyright terms: Public domain | W3C validator |