Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vn Unicode version

Theorem bj-inf2vn 10099
Description: A sufficient condition for  om to be a set. See bj-inf2vn2 10100 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-inf2vn.1  |- BOUNDED  A
Assertion
Ref Expression
bj-inf2vn  |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
)
Distinct variable group:    x, y, A
Allowed substitution hints:    V( x, y)

Proof of Theorem bj-inf2vn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem1 10095 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
2 bi1 111 . . . . . . 7  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( x  e.  A  ->  ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y ) ) )
32alimi 1344 . . . . . 6  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( x  e.  A  ->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) ) )
4 df-ral 2311 . . . . . 6  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  <->  A. x
( x  e.  A  ->  ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y ) ) )
53, 4sylibr 137 . . . . 5  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )
6 bj-inf2vn.1 . . . . . 6  |- BOUNDED  A
7 bdcv 9968 . . . . . 6  |- BOUNDED  z
86, 7bj-inf2vnlem3 10097 . . . . 5  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  z  ->  A  C_  z ) )
95, 8syl 14 . . . 4  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
(Ind  z  ->  A  C_  z ) )
109alrimiv 1754 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. z (Ind  z  ->  A  C_  z ) )
111, 10jca 290 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
(Ind  A  /\  A. z (Ind  z  ->  A 
C_  z ) ) )
12 bj-om 10061 . 2  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. z (Ind  z  ->  A  C_  z
) ) ) )
1311, 12syl5ibr 145 1  |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629   A.wal 1241    = wceq 1243    e. wcel 1393   A.wral 2306   E.wrex 2307    C_ wss 2917   (/)c0 3224   suc csuc 4102   omcom 4313  BOUNDED wbdc 9960  Ind wind 10050
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-nul 3883  ax-pr 3944  ax-un 4170  ax-bd0 9933  ax-bdim 9934  ax-bdor 9936  ax-bdex 9939  ax-bdeq 9940  ax-bdel 9941  ax-bdsb 9942  ax-bdsep 10004  ax-bdsetind 10093
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-sn 3381  df-pr 3382  df-uni 3581  df-int 3616  df-suc 4108  df-iom 4314  df-bdc 9961  df-bj-ind 10051
This theorem is referenced by:  bj-omex2  10102  bj-nn0sucALT  10103
  Copyright terms: Public domain W3C validator