Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-findes Unicode version

Theorem bj-findes 10106
Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 10104 for explanations. From this version, it is easy to prove findes 4326. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-findes  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )

Proof of Theorem bj-findes
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1421 . . . 4  |-  F/ y
ph
2 nfv 1421 . . . 4  |-  F/ y
[. suc  x  /  x ]. ph
31, 2nfim 1464 . . 3  |-  F/ y ( ph  ->  [. suc  x  /  x ]. ph )
4 nfs1v 1815 . . . 4  |-  F/ x [ y  /  x ] ph
5 nfsbc1v 2782 . . . 4  |-  F/ x [. suc  y  /  x ]. ph
64, 5nfim 1464 . . 3  |-  F/ x
( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
7 sbequ12 1654 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
8 suceq 4139 . . . . 5  |-  ( x  =  y  ->  suc  x  =  suc  y )
98sbceq1d 2769 . . . 4  |-  ( x  =  y  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  y  /  x ]. ph ) )
107, 9imbi12d 223 . . 3  |-  ( x  =  y  ->  (
( ph  ->  [. suc  x  /  x ]. ph )  <->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
) )
113, 6, 10cbvral 2529 . 2  |-  ( A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )  <->  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph ) )
12 nfsbc1v 2782 . . 3  |-  F/ x [. (/)  /  x ]. ph
13 sbceq1a 2773 . . . 4  |-  ( x  =  (/)  ->  ( ph  <->  [. (/)  /  x ]. ph )
)
1413biimprd 147 . . 3  |-  ( x  =  (/)  ->  ( [. (/)  /  x ]. ph  ->  ph ) )
15 sbequ1 1651 . . 3  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
16 sbceq1a 2773 . . . 4  |-  ( x  =  suc  y  -> 
( ph  <->  [. suc  y  /  x ]. ph ) )
1716biimprd 147 . . 3  |-  ( x  =  suc  y  -> 
( [. suc  y  /  x ]. ph  ->  ph )
)
1812, 4, 5, 14, 15, 17bj-findis 10104 . 2  |-  ( (
[. (/)  /  x ]. ph 
/\  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)  ->  A. x  e.  om  ph )
1911, 18sylan2b 271 1  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243   [wsb 1645   A.wral 2306   [.wsbc 2764   (/)c0 3224   suc csuc 4102   omcom 4313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-nul 3883  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-bd0 9933  ax-bdim 9934  ax-bdan 9935  ax-bdor 9936  ax-bdn 9937  ax-bdal 9938  ax-bdex 9939  ax-bdeq 9940  ax-bdel 9941  ax-bdsb 9942  ax-bdsep 10004  ax-infvn 10066
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-sn 3381  df-pr 3382  df-uni 3581  df-int 3616  df-suc 4108  df-iom 4314  df-bdc 9961  df-bj-ind 10051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator