ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom3 Unicode version

Theorem binom3 9366
Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.)
Assertion
Ref Expression
binom3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )

Proof of Theorem binom3
StepHypRef Expression
1 df-3 7974 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5523 . . 3  |-  ( ( A  +  B ) ^ 3 )  =  ( ( A  +  B ) ^ (
2  +  1 ) )
3 addcl 7006 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
4 2nn0 8198 . . . 4  |-  2  e.  NN0
5 expp1 9262 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  2  e.  NN0 )  -> 
( ( A  +  B ) ^ (
2  +  1 ) )  =  ( ( ( A  +  B
) ^ 2 )  x.  ( A  +  B ) ) )
63, 4, 5sylancl 392 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ (
2  +  1 ) )  =  ( ( ( A  +  B
) ^ 2 )  x.  ( A  +  B ) ) )
72, 6syl5eq 2084 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A  +  B
) ^ 2 )  x.  ( A  +  B ) ) )
8 sqcl 9315 . . . . 5  |-  ( ( A  +  B )  e.  CC  ->  (
( A  +  B
) ^ 2 )  e.  CC )
93, 8syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  e.  CC )
10 simpl 102 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
11 simpr 103 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
129, 10, 11adddid 7051 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  ( A  +  B )
)  =  ( ( ( ( A  +  B ) ^ 2 )  x.  A )  +  ( ( ( A  +  B ) ^ 2 )  x.  B ) ) )
13 binom2 9362 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
1413oveq1d 5527 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  A
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  x.  A ) )
15 sqcl 9315 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
1610, 15syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
17 2cn 7986 . . . . . . . 8  |-  2  e.  CC
18 mulcl 7008 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
19 mulcl 7008 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( A  x.  B
)  e.  CC )  ->  ( 2  x.  ( A  x.  B
) )  e.  CC )
2017, 18, 19sylancr 393 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  e.  CC )
2116, 20addcld 7046 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  e.  CC )
22 sqcl 9315 . . . . . . 7  |-  ( B  e.  CC  ->  ( B ^ 2 )  e.  CC )
2311, 22syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2421, 23, 10adddird 7052 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  x.  A
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  A )  +  ( ( B ^ 2 )  x.  A ) ) )
2516, 20, 10adddird 7052 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  x.  A
)  =  ( ( ( A ^ 2 )  x.  A )  +  ( ( 2  x.  ( A  x.  B ) )  x.  A ) ) )
261oveq2i 5523 . . . . . . . . 9  |-  ( A ^ 3 )  =  ( A ^ (
2  +  1 ) )
27 expp1 9262 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
2810, 4, 27sylancl 392 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
2926, 28syl5eq 2084 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 3 )  =  ( ( A ^ 2 )  x.  A ) )
30 sqval 9312 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
3110, 30syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
3231oveq1d 5527 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  =  ( ( A  x.  A )  x.  B ) )
3310, 10, 11mul32d 7166 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  x.  B
)  =  ( ( A  x.  B )  x.  A ) )
3432, 33eqtrd 2072 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  =  ( ( A  x.  B )  x.  A ) )
3534oveq2d 5528 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( A ^ 2 )  x.  B ) )  =  ( 2  x.  ( ( A  x.  B )  x.  A ) ) )
36 2cnd 7988 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  CC )
3736, 18, 10mulassd 7050 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( A  x.  B
) )  x.  A
)  =  ( 2  x.  ( ( A  x.  B )  x.  A ) ) )
3835, 37eqtr4d 2075 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( A  x.  B ) )  x.  A ) )
3929, 38oveq12d 5530 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  =  ( ( ( A ^ 2 )  x.  A )  +  ( ( 2  x.  ( A  x.  B ) )  x.  A ) ) )
4025, 39eqtr4d 2075 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  x.  A
)  =  ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) ) )
4123, 10mulcomd 7048 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
2 )  x.  A
)  =  ( A  x.  ( B ^
2 ) ) )
4240, 41oveq12d 5530 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  x.  A )  +  ( ( B ^ 2 )  x.  A ) )  =  ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( A  x.  ( B ^ 2 ) ) ) )
4314, 24, 423eqtrd 2076 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  A
)  =  ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( A  x.  ( B ^ 2 ) ) ) )
4413oveq1d 5527 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  B
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  x.  B ) )
4521, 23, 11adddird 7052 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  x.  B
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  B )  +  ( ( B ^ 2 )  x.  B ) ) )
46 sqval 9312 . . . . . . . . . . . . . 14  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
4711, 46syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
4847oveq2d 5528 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  =  ( A  x.  ( B  x.  B
) ) )
4910, 11, 11mulassd 7050 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  x.  B
)  =  ( A  x.  ( B  x.  B ) ) )
5048, 49eqtr4d 2075 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  =  ( ( A  x.  B )  x.  B ) )
5150oveq2d 5528 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( 2  x.  ( ( A  x.  B )  x.  B ) ) )
5236, 18, 11mulassd 7050 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( A  x.  B
) )  x.  B
)  =  ( 2  x.  ( ( A  x.  B )  x.  B ) ) )
5351, 52eqtr4d 2075 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( 2  x.  ( A  x.  B ) )  x.  B ) )
5453oveq2d 5528 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^
2 ) ) ) )  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  B ) )  x.  B ) ) )
5516, 20, 11adddird 7052 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  x.  B
)  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  B ) )  x.  B ) ) )
5654, 55eqtr4d 2075 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^
2 ) ) ) )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  B ) )
571oveq2i 5523 . . . . . . . 8  |-  ( B ^ 3 )  =  ( B ^ (
2  +  1 ) )
58 expp1 9262 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  2  e.  NN0 )  -> 
( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
5911, 4, 58sylancl 392 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
6057, 59syl5eq 2084 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 3 )  =  ( ( B ^ 2 )  x.  B ) )
6156, 60oveq12d 5530 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) )  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  B )  +  ( ( B ^ 2 )  x.  B ) ) )
6216, 11mulcld 7047 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  e.  CC )
6310, 23mulcld 7047 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  e.  CC )
64 mulcl 7008 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( A  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 2  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
6517, 63, 64sylancr 393 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
66 3nn0 8199 . . . . . . . 8  |-  3  e.  NN0
67 expcl 9273 . . . . . . . 8  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
6811, 66, 67sylancl 392 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 3 )  e.  CC )
6962, 65, 68addassd 7049 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) )  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
7061, 69eqtr3d 2074 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  x.  B )  +  ( ( B ^ 2 )  x.  B ) )  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
7144, 45, 703eqtrd 2076 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  B
)  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
7243, 71oveq12d 5530 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  B ) ^ 2 )  x.  A )  +  ( ( ( A  +  B ) ^ 2 )  x.  B ) )  =  ( ( ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( A  x.  ( B ^
2 ) ) )  +  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) ) )
73 expcl 9273 . . . . . 6  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
7410, 66, 73sylancl 392 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 3 )  e.  CC )
75 mulcl 7008 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( ( A ^
2 )  x.  B
)  e.  CC )  ->  ( 2  x.  ( ( A ^
2 )  x.  B
) )  e.  CC )
7617, 62, 75sylancr 393 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( A ^ 2 )  x.  B ) )  e.  CC )
7774, 76addcld 7046 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  e.  CC )
7865, 68addcld 7046 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  e.  CC )
7977, 63, 62, 78add4d 7180 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( A  x.  ( B ^ 2 ) ) )  +  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )  =  ( ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( A ^
2 )  x.  B
) )  +  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) ) )
8012, 72, 793eqtrd 2076 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  ( A  +  B )
)  =  ( ( ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( A ^ 2 )  x.  B ) )  +  ( ( A  x.  ( B ^
2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) ) )
8174, 76, 62addassd 7049 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 2  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( A ^ 2 )  x.  B ) )  =  ( ( A ^ 3 )  +  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^
2 )  x.  B
) ) ) )
821oveq1i 5522 . . . . . . 7  |-  ( 3  x.  ( ( A ^ 2 )  x.  B ) )  =  ( ( 2  +  1 )  x.  (
( A ^ 2 )  x.  B ) )
83 1cnd 7043 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
8436, 83, 62adddird 7052 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  +  1 )  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( 1  x.  ( ( A ^
2 )  x.  B
) ) ) )
8582, 84syl5eq 2084 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( 1  x.  ( ( A ^
2 )  x.  B
) ) ) )
8662mulid2d 7045 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( A ^ 2 )  x.  B ) )
8786oveq2d 5528 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( A ^
2 )  x.  B
) )  +  ( 1  x.  ( ( A ^ 2 )  x.  B ) ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^ 2 )  x.  B ) ) )
8885, 87eqtrd 2072 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^ 2 )  x.  B ) ) )
8988oveq2d 5528 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  =  ( ( A ^ 3 )  +  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^
2 )  x.  B
) ) ) )
9081, 89eqtr4d 2075 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 2  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( A ^ 2 )  x.  B ) )  =  ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) ) )
91 1p2e3 8044 . . . . . . . 8  |-  ( 1  +  2 )  =  3
9291oveq1i 5522 . . . . . . 7  |-  ( ( 1  +  2 )  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( 3  x.  ( A  x.  ( B ^
2 ) ) )
9383, 36, 63adddird 7052 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  2 )  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
2 ) ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9492, 93syl5eqr 2086 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
2 ) ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9563mulid2d 7045 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( A  x.  ( B ^
2 ) ) )
9695oveq1d 5527 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  =  ( ( A  x.  ( B ^ 2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9794, 96eqtrd 2072 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( A  x.  ( B ^ 2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9897oveq1d 5527 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  =  ( ( ( A  x.  ( B ^ 2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) ) )
9963, 65, 68addassd 7049 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  ( B ^
2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) )  =  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
10098, 99eqtr2d 2073 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  =  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )
10190, 100oveq12d 5530 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( A ^
2 )  x.  B
) )  +  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )  =  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
1027, 80, 1013eqtrd 2076 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393  (class class class)co 5512   CCcc 6887   1c1 6890    + caddc 6892    x. cmul 6894   2c2 7964   3c3 7965   NN0cn0 8181   ^cexp 9254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-n0 8182  df-z 8246  df-uz 8474  df-iseq 9212  df-iexp 9255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator