Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdth Unicode version

Theorem bdth 9951
Description: A truth (a (closed) theorem) is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdth.1  |-  ph
Assertion
Ref Expression
bdth  |- BOUNDED  ph

Proof of Theorem bdth
StepHypRef Expression
1 ax-bdeq 9940 . . 3  |- BOUNDED  x  =  x
21, 1ax-bdim 9934 . 2  |- BOUNDED  ( x  =  x  ->  x  =  x )
3 id 19 . . 3  |-  ( x  =  x  ->  x  =  x )
4 bdth.1 . . 3  |-  ph
53, 42th 163 . 2  |-  ( ( x  =  x  ->  x  =  x )  <->  ph )
62, 5bd0 9944 1  |- BOUNDED  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4  BOUNDED wbd 9932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 100  ax-ia3 101  ax-bd0 9933  ax-bdim 9934  ax-bdeq 9940
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  bdtru  9952  bdcvv  9977
  Copyright terms: Public domain W3C validator