Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexd Unicode version

Theorem bdssexd 10025
 Description: Bounded version of ssexd 3897. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssexd.1
bdssexd.2
bdssexd.bd BOUNDED
Assertion
Ref Expression
bdssexd

Proof of Theorem bdssexd
StepHypRef Expression
1 bdssexd.2 . 2
2 bdssexd.1 . 2
3 bdssexd.bd . . 3 BOUNDED
43bdssexg 10024 . 2
51, 2, 4syl2anc 391 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1393  cvv 2557   wss 2917  BOUNDED wbdc 9960 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-bdsep 10004 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-bdc 9961 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator