Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsbcALT Unicode version

Theorem bdsbcALT 9979
Description: Alternate proof of bdsbc 9978. (Contributed by BJ, 16-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdcsbc.1  |- BOUNDED  ph
Assertion
Ref Expression
bdsbcALT  |- BOUNDED  [. y  /  x ]. ph

Proof of Theorem bdsbcALT
StepHypRef Expression
1 bdcsbc.1 . . 3  |- BOUNDED  ph
21bdab 9958 . 2  |- BOUNDED  y  e.  { x  |  ph }
3 df-sbc 2765 . 2  |-  ( [. y  /  x ]. ph  <->  y  e.  { x  |  ph }
)
42, 3bd0r 9945 1  |- BOUNDED  [. y  /  x ]. ph
Colors of variables: wff set class
Syntax hints:    e. wcel 1393   {cab 2026   [.wsbc 2764  BOUNDED wbd 9932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-bd0 9933  ax-bdsb 9942
This theorem depends on definitions:  df-bi 110  df-clab 2027  df-sbc 2765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator