Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrabexg Unicode version

Theorem bdrabexg 10026
 Description: Bounded version of rabexg 3900. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdrabexg.bd BOUNDED
bdrabexg.bdc BOUNDED
Assertion
Ref Expression
bdrabexg
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem bdrabexg
StepHypRef Expression
1 ssrab2 3025 . 2
2 bdrabexg.bdc . . . 4 BOUNDED
3 bdrabexg.bd . . . 4 BOUNDED
42, 3bdcrab 9972 . . 3 BOUNDED
54bdssexg 10024 . 2
61, 5mpan 400 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1393  crab 2310  cvv 2557   wss 2917  BOUNDED wbd 9932  BOUNDED wbdc 9960 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-bd0 9933  ax-bdan 9935  ax-bdsb 9942  ax-bdsep 10004 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-in 2924  df-ss 2931  df-bdc 9961 This theorem is referenced by:  bj-inex  10027
 Copyright terms: Public domain W3C validator