![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeqsuc | Unicode version |
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bdeqsuc |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsuc 10000 |
. . . 4
![]() ![]() ![]() | |
2 | 1 | bdss 9984 |
. . 3
![]() ![]() ![]() ![]() ![]() |
3 | bdcv 9968 |
. . . . . . 7
![]() ![]() | |
4 | 3 | bdss 9984 |
. . . . . 6
![]() ![]() ![]() ![]() |
5 | 3 | bdsnss 9993 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4, 5 | ax-bdan 9935 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | unss 3117 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | bd0 9944 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | df-suc 4108 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 9 | sseq1i 2969 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | bd0r 9945 |
. . 3
![]() ![]() ![]() ![]() ![]() |
12 | 2, 11 | ax-bdan 9935 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | eqss 2960 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | bd0r 9945 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-bd0 9933 ax-bdan 9935 ax-bdor 9936 ax-bdal 9938 ax-bdeq 9940 ax-bdel 9941 ax-bdsb 9942 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-suc 4108 df-bdc 9961 |
This theorem is referenced by: bj-bdsucel 10002 bj-nn0suc0 10075 |
Copyright terms: Public domain | W3C validator |