![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | Unicode version |
Description: A class equal to a
bounded one is bounded. Stated with a commuted
(compared with bdceqi 9963) equality in the hypothesis, to work better
with definitions (![]() |
Ref | Expression |
---|---|
bdceqir.min |
![]() ![]() |
bdceqir.maj |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bdceqir |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceqir.min |
. 2
![]() ![]() | |
2 | bdceqir.maj |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2044 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | bdceqi 9963 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 ax-bd0 9933 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-clel 2036 df-bdc 9961 |
This theorem is referenced by: bdcrab 9972 bdccsb 9980 bdcdif 9981 bdcun 9982 bdcin 9983 bdcnulALT 9986 bdcpw 9989 bdcsn 9990 bdcpr 9991 bdctp 9992 bdcuni 9996 bdcint 9997 bdciun 9998 bdciin 9999 bdcsuc 10000 bdcriota 10003 |
Copyright terms: Public domain | W3C validator |