Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcl Unicode version

Theorem axmulcl 6942
 Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 6982 be used later. Instead, in most cases use mulcl 7008. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcl

Proof of Theorem axmulcl
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4361 . . . . 5
2 df-c 6895 . . . . 5
31, 2eleq2s 2132 . . . 4
4 elxpi 4361 . . . . 5
54, 2eleq2s 2132 . . . 4
63, 5anim12i 321 . . 3
7 ee4anv 1809 . . 3
86, 7sylibr 137 . 2
9 simpll 481 . . . . . . 7
10 simprl 483 . . . . . . 7
119, 10oveq12d 5530 . . . . . 6
12 mulcnsr 6911 . . . . . . 7
1312ad2ant2l 477 . . . . . 6
1411, 13eqtrd 2072 . . . . 5
15 simplrl 487 . . . . . . . . 9
16 simprrl 491 . . . . . . . . 9
17 mulclsr 6839 . . . . . . . . 9
1815, 16, 17syl2anc 391 . . . . . . . 8
19 m1r 6837 . . . . . . . . . 10
2019a1i 9 . . . . . . . . 9
21 simplrr 488 . . . . . . . . . 10
22 simprrr 492 . . . . . . . . . 10
23 mulclsr 6839 . . . . . . . . . 10
2421, 22, 23syl2anc 391 . . . . . . . . 9
25 mulclsr 6839 . . . . . . . . 9
2620, 24, 25syl2anc 391 . . . . . . . 8
27 addclsr 6838 . . . . . . . 8
2818, 26, 27syl2anc 391 . . . . . . 7
29 mulclsr 6839 . . . . . . . . 9
3021, 16, 29syl2anc 391 . . . . . . . 8
31 mulclsr 6839 . . . . . . . . 9
3215, 22, 31syl2anc 391 . . . . . . . 8
33 addclsr 6838 . . . . . . . 8
3430, 32, 33syl2anc 391 . . . . . . 7
35 opelxpi 4376 . . . . . . 7
3628, 34, 35syl2anc 391 . . . . . 6
3736, 2syl6eleqr 2131 . . . . 5
3814, 37eqeltrd 2114 . . . 4
3938exlimivv 1776 . . 3
4039exlimivv 1776 . 2
418, 40syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wceq 1243  wex 1381   wcel 1393  cop 3378   cxp 4343  (class class class)co 5512  cnr 6395  cm1r 6398   cplr 6399   cmr 6400  cc 6887   cmul 6894 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-imp 6567  df-enr 6811  df-nr 6812  df-plr 6813  df-mr 6814  df-m1r 6818  df-c 6895  df-mul 6901 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator